

Cambridge International Examinations Cambridge International Advanced Subsidiary and Advanced Level

CHEMISTRY

9701/23 October/November 2016

Paper 2 AS Structured Questions MARK SCHEME Maximum Mark: 60

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge will not enter into discussions about these mark schemes.

Cambridge is publishing the mark schemes for the October/November 2016 series for most Cambridge IGCSE[®], Cambridge International A and AS Level components and some Cambridge O Level components.

® IGCSE is the registered trademark of Cambridge International Examinations.

[Turn over

-		
-	-0	
-		
24	-6	
÷	-1	
۰.		
6	5	
	HØ.	
111		
2		
27	-	6
	e	
é	31.	
100	-	
	34	
- 63	D	
2	2	
_	₹	
-	-	
- 2	2	
- 63	D)	
	E.	
ς	3	
- 21	55	
-93	0	
	-	
t	3	
-21	Б.	
0	D	
-67	-	
-		
10	22	
10	9	

Page 2	Mark Scheme		Paper
	Cambridge International AS/A Level – October/November 2016	9701	23

Question	Answer	Mark	ĸs
1(a)	$6 \times 10^{-3} \text{ (mol)}$	1	1
1(b)	$NaOH + HCl \rightarrow NaCl + H_2O$	1	1
1(c)	6×10^{-3} (mol)	1	1
1(d)	4×10^{-3} (mol)	1	1
1(e)	4×10^{-3} (mol)	1	1
1(f)	1×10^{-3} (mol)	1	1
1(g)	170	1	1
1(h)	28(.0) Si/silicon	1 1	2
	Total:		9

Page 3	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9701	23

Question	Answer		ks
2(a)(i)	Enthalpy/energy/heat change when one mole of a substance	1	3
	Burns/combusts/reacts in excess oxygen OR Completely burns/combusts/reacts in oxygen	1	
	under standard conditions	1	
2(a)(ii)	$C_2H_5OH + 3O_2 \rightarrow 2CO_2 + 3H_2O$	1	1
2(b)(i)	6813.4/6813/6810/6800 (J)	1	1
2(b)(ii)	-1362.68/-1362.7/-1363/-1360/-1400 (kJ)	1	1
2(b)(iii)	Any 2 from: heat/energy losses (to air and/or to the container/surroundings)	1	2
	incomplete combustion	1	
	(volatile) ethanol evaporated		
	ethanol is impure		
	not all energy is lost as heat		
2(c)(i)	$3C(s) + 4H_2(g) + \frac{1}{2}O_2(g) \rightarrow C_3H_7OH(I)$		3
	3(-393.5) 4 x (-285.8) -2021.0	1+1	
	$3CO_2 + 4H_2O$	1	

Question	Answer		
2(c)(ii)	$\Delta H_{f} + (-2021.0) = 3(-393.5) + 4(-285.8)$ $\Delta H_{f} = -302.7 \text{ (kJ mol}^{-1}\text{)}$	1 2 1	
	Total:	13	;

Question	Answer	Ma	arks
3(a)(i)	(Atoms/ ions become larger as) the number of (electron) shells increases (down the group)	1	2
	Increased distance of (outer) electrons (from the nucleus) OR Increased shielding results in weaker (nuclear) attraction/pull	1	
3(a)(ii)	top line/dotted line is atomic radii/bottom line/line with crosses is ionic radii (as atoms bigger than ions)	1	2
	Atom has one more shell (than corresponding ion) (ora) OR Atom loses two electrons/outer (shell) electrons/valency electrons (ora) OR Atom loses electrons and so (nuclear) attraction is stronger OR Nuclear charge in ion is greater than the electron(ic) charge (ora) OR Effective nuclear charge in ion is greater (ora)	1	
3(b)(i)	Nitrate/Nitrate(V)/NO ₃	1	1
3(b)(ii)	Ba/barium OR Sr/Strontium Ba ²⁺ + SO ₄ ²⁻ \rightarrow BaSO ₄ OR Sr ²⁺ + SO ₄ ²⁻ \rightarrow SrSO ₄	1	1

	- 10	
	₹	
	J	
8		
ň,		
- 63	D.	
	₹	
	b	
- 63	D	
77	-	
	b.	
τ		
	в	
0	D	
- 27	-	
2	-	
-	-	
6		
- 64	D.	

Page 5	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9701	23

Question	Answer		rks
3(b)(iii)	Ba(NO ₃) ₂ OR Sr(NO ₃) ₂	1	2
	$2Ba(NO_3)_2 \rightarrow 2BaO + 4NO_2 + O_2$	1	
	$\begin{array}{l} OR\\ 2Sr(NO_3)_2 \rightarrow 2SrO + 4NO_2 + O_2 \end{array}$		
3(c)(i)	$H^{+} + OH^{-} \rightarrow H_2O \text{ OR } Ca(OH)_2 + 2H^{+} \rightarrow Ca^{2+} + 2H_2O$	1	2
	$\begin{array}{c} 2H^{*}+CO_{3}^{2^{-}}\rightarrow CO_{2}+H_{2}O \text{ OR }CaCO_{3}+2H^{*}\rightarrow Ca^{2^{+}}+CO_{2}+H_{2}O\\ \text{ OR }H^{*}+CO_{3}^{2^{-}}\rightarrow HCO_{3}^{-} \text{ OR }CaCO_{3}+H^{*}\rightarrow Ca^{2^{+}}+HCO_{3}^{-}\end{array}$	1	
3(c)(ii)	Calcium carbonate is insoluble / less soluble (ora)	1	2
	Calcium carbonate is less likely to be/won't get washed away (ora) OR	1	
	Calcium carbonate lasts longer (ora) OR		
	Calcium carbonate is less reactive / reacts more slowly (ora)		
3(d)	Mg(OH) ₂	1	2
	MgO	1	
	Total:		14

Page 6	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9701	23

Question	Answer		rks
4(a)(i)	4-methylhex-2-ene	1	1
4(a)(ii)	(Molecules with the) same structural formula (and same molecular formula) with different arrangement of atoms/groups (in space)	1	1
4(a)(iii)	4	1	4
	double-bond/alkene	1	
	(2) different groups on each double-bonded carbon	1	
	(one) chiral carbon (centre)/(one) carbon atom has 4 different groups attached/is asymmetric/is chiral	1	
4(b)(i)	2,3-dimethylbut-2-ene	1	1
4(b)(ii)	OH OH	1	1
4(b)(iii)	Propanone	1	1
4(b)(iv)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1
4(c)(i)	(2-)methylprop(-1-)ene	1	1

Page 7	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9701	23

Question	Answer	Mar	rks
4(c)(ii)	$H_{3}C \xrightarrow{CH_{3}} H_{3}C \xrightarrow{CH_{3}} H_{3$	4	4
4(c)(iii)	<pre>(tertiary carbocat)ion/(tertiary) intermediate is/C+ with least number of hydrogen atoms bonded to it is more stable (than primary) due to (positive) inductive effect of three/more methyl groups (cf one)/three/more electron releasing methyl groups three/more electron donating methyl groups reducing charge (density) on C+</pre>		3
	Total:		18

Page 8	Mark Scheme	Syllabus	Paper
	Cambridge International AS/A Level – October/November 2016	9701	23

Question	Answer	Marks	
5(a)	OH	1	1
5(b)	$H^{+}/Cr_{2}O_{7}^{2-}$	1	2
	(heat under) reflux	1	
5(c)	$H^{+}/Cr_{2}O_{7}^{2-}$	1	2
	(heat and) distil	1	
5(d)	(1-)propyl propanoate	1	1
	Total:		6